Step | Hyp | Ref | Expression |
1 |
|
bgcd01 |
bgcd 0 0 = 0 |
2 |
|
bgcdeq1 |
a = 0 -> bgcd a 0 = bgcd 0 0 |
3 |
1, 2 |
syl6eq |
a = 0 -> bgcd a 0 = 0 |
4 |
|
id |
a = 0 -> a = 0 |
5 |
3, 4 |
eqtr4d |
a = 0 -> bgcd a 0 = a |
6 |
|
lt01 |
0 < a <-> a != 0 |
7 |
6 |
conv ne |
0 < a <-> ~a = 0 |
8 |
7 |
bi2i |
~a = 0 -> 0 < a |
9 |
|
eqtr |
1 * a = a -> a = 0 * 0 + a -> 1 * a = 0 * 0 + a |
10 |
|
mul11 |
1 * a = a |
11 |
9, 10 |
ax_mp |
a = 0 * 0 + a -> 1 * a = 0 * 0 + a |
12 |
|
eqcom |
0 * 0 + a = a -> a = 0 * 0 + a |
13 |
|
eqtr |
0 * 0 + a = 0 + a -> 0 + a = a -> 0 * 0 + a = a |
14 |
|
addeq1 |
0 * 0 = 0 -> 0 * 0 + a = 0 + a |
15 |
|
mul01 |
0 * 0 = 0 |
16 |
14, 15 |
ax_mp |
0 * 0 + a = 0 + a |
17 |
13, 16 |
ax_mp |
0 + a = a -> 0 * 0 + a = a |
18 |
|
add01 |
0 + a = a |
19 |
17, 18 |
ax_mp |
0 * 0 + a = a |
20 |
12, 19 |
ax_mp |
a = 0 * 0 + a |
21 |
11, 20 |
ax_mp |
1 * a = 0 * 0 + a |
22 |
21 |
a1i |
~a = 0 -> 1 * a = 0 * 0 + a |
23 |
8, 22 |
bgcdled |
~a = 0 -> bgcd a 0 <= a |
24 |
|
bgcdbezout |
E. x E. y x * a = y * 0 + bgcd a 0 |
25 |
10 |
a1i |
~a = 0 /\ x * a = y * 0 + bgcd a 0 -> 1 * a = a |
26 |
|
add01 |
0 + bgcd a 0 = bgcd a 0 |
27 |
|
addeq1 |
y * 0 = 0 -> y * 0 + bgcd a 0 = 0 + bgcd a 0 |
28 |
|
mul0 |
y * 0 = 0 |
29 |
27, 28 |
ax_mp |
y * 0 + bgcd a 0 = 0 + bgcd a 0 |
30 |
|
anr |
~a = 0 /\ x * a = y * 0 + bgcd a 0 -> x * a = y * 0 + bgcd a 0 |
31 |
29, 30 |
syl6eq |
~a = 0 /\ x * a = y * 0 + bgcd a 0 -> x * a = 0 + bgcd a 0 |
32 |
26, 31 |
syl6eq |
~a = 0 /\ x * a = y * 0 + bgcd a 0 -> x * a = bgcd a 0 |
33 |
25, 32 |
leeqd |
~a = 0 /\ x * a = y * 0 + bgcd a 0 -> (1 * a <= x * a <-> a <= bgcd a 0) |
34 |
|
lemul1a |
1 <= x -> 1 * a <= x * a |
35 |
|
lt01 |
0 < x <-> x != 0 |
36 |
35 |
conv d1, lt |
1 <= x <-> x != 0 |
37 |
|
ltner |
0 < bgcd a 0 -> bgcd a 0 != 0 |
38 |
37 |
conv ne |
0 < bgcd a 0 -> ~bgcd a 0 = 0 |
39 |
|
bgcdpos |
a != 0 -> 0 < bgcd a 0 |
40 |
39 |
conv ne |
~a = 0 -> 0 < bgcd a 0 |
41 |
38, 40 |
syl |
~a = 0 -> ~bgcd a 0 = 0 |
42 |
41 |
anwl |
~a = 0 /\ x * a = y * 0 + bgcd a 0 -> ~bgcd a 0 = 0 |
43 |
32 |
anwl |
~a = 0 /\ x * a = y * 0 + bgcd a 0 /\ x = 0 -> x * a = bgcd a 0 |
44 |
|
mul01 |
0 * a = 0 |
45 |
|
muleq1 |
x = 0 -> x * a = 0 * a |
46 |
45 |
anwr |
~a = 0 /\ x * a = y * 0 + bgcd a 0 /\ x = 0 -> x * a = 0 * a |
47 |
44, 46 |
syl6eq |
~a = 0 /\ x * a = y * 0 + bgcd a 0 /\ x = 0 -> x * a = 0 |
48 |
43, 47 |
eqtr3d |
~a = 0 /\ x * a = y * 0 + bgcd a 0 /\ x = 0 -> bgcd a 0 = 0 |
49 |
42, 48 |
mtand |
~a = 0 /\ x * a = y * 0 + bgcd a 0 -> ~x = 0 |
50 |
49 |
conv ne |
~a = 0 /\ x * a = y * 0 + bgcd a 0 -> x != 0 |
51 |
36, 50 |
sylibr |
~a = 0 /\ x * a = y * 0 + bgcd a 0 -> 1 <= x |
52 |
34, 51 |
syl |
~a = 0 /\ x * a = y * 0 + bgcd a 0 -> 1 * a <= x * a |
53 |
33, 52 |
mpbid |
~a = 0 /\ x * a = y * 0 + bgcd a 0 -> a <= bgcd a 0 |
54 |
53 |
eexda |
~a = 0 -> E. y x * a = y * 0 + bgcd a 0 -> a <= bgcd a 0 |
55 |
54 |
eexd |
~a = 0 -> E. x E. y x * a = y * 0 + bgcd a 0 -> a <= bgcd a 0 |
56 |
24, 55 |
mpi |
~a = 0 -> a <= bgcd a 0 |
57 |
23, 56 |
leasymd |
~a = 0 -> bgcd a 0 = a |
58 |
5, 57 |
cases |
bgcd a 0 = a |