theorem bgcdbezout (a b: nat) {x y: nat}:
$ E. x E. y x * a = y * b + bgcd a b $;
Step | Hyp | Ref | Expression |
1 |
|
anlr |
a = 0 /\ x = 0 /\ y = 0 -> x = 0 |
2 |
|
anll |
a = 0 /\ x = 0 /\ y = 0 -> a = 0 |
3 |
1, 2 |
muleqd |
a = 0 /\ x = 0 /\ y = 0 -> x * a = 0 * 0 |
4 |
|
mul01 |
0 * 0 = 0 |
5 |
|
add0 |
0 + 0 = 0 |
6 |
|
mul01 |
0 * b = 0 |
7 |
|
muleq1 |
y = 0 -> y * b = 0 * b |
8 |
7 |
anwr |
a = 0 /\ x = 0 /\ y = 0 -> y * b = 0 * b |
9 |
6, 8 |
syl6eq |
a = 0 /\ x = 0 /\ y = 0 -> y * b = 0 |
10 |
|
bgcd01 |
bgcd 0 b = 0 |
11 |
2 |
bgcdeq1d |
a = 0 /\ x = 0 /\ y = 0 -> bgcd a b = bgcd 0 b |
12 |
10, 11 |
syl6eq |
a = 0 /\ x = 0 /\ y = 0 -> bgcd a b = 0 |
13 |
9, 12 |
addeqd |
a = 0 /\ x = 0 /\ y = 0 -> y * b + bgcd a b = 0 + 0 |
14 |
5, 13 |
syl6eq |
a = 0 /\ x = 0 /\ y = 0 -> y * b + bgcd a b = 0 |
15 |
4, 14 |
syl6eqr |
a = 0 /\ x = 0 /\ y = 0 -> y * b + bgcd a b = 0 * 0 |
16 |
3, 15 |
eqtr4d |
a = 0 /\ x = 0 /\ y = 0 -> x * a = y * b + bgcd a b |
17 |
16 |
iexde |
a = 0 /\ x = 0 -> E. y x * a = y * b + bgcd a b |
18 |
17 |
iexde |
a = 0 -> E. x E. y x * a = y * b + bgcd a b |
19 |
|
bgcdlem |
a != 0 -> 0 < bgcd a b /\ E. x E. y x * a = y * b + bgcd a b |
20 |
19 |
conv ne |
~a = 0 -> 0 < bgcd a b /\ E. x E. y x * a = y * b + bgcd a b |
21 |
20 |
anrd |
~a = 0 -> E. x E. y x * a = y * b + bgcd a b |
22 |
18, 21 |
cases |
E. x E. y x * a = y * b + bgcd a b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)