theorem bgcd01 (b: nat): $ bgcd 0 b = 0 $;
Step | Hyp | Ref | Expression |
1 |
|
least0 |
~E. d d e. {d2 | 0 < d2 /\ E. x E. y x * 0 = y * b + d2} -> least {d2 | 0 < d2 /\ E. x E. y x * 0 = y * b + d2} = 0 |
2 |
1 |
conv bgcd |
~E. d d e. {d2 | 0 < d2 /\ E. x E. y x * 0 = y * b + d2} -> bgcd 0 b = 0 |
3 |
|
lteq2 |
d2 = d -> (0 < d2 <-> 0 < d) |
4 |
|
mul02 |
x * 0 = 0 |
5 |
4 |
a1i |
d2 = d -> x * 0 = 0 |
6 |
|
addeq2 |
d2 = d -> y * b + d2 = y * b + d |
7 |
5, 6 |
eqeqd |
d2 = d -> (x * 0 = y * b + d2 <-> 0 = y * b + d) |
8 |
7 |
exeqd |
d2 = d -> (E. y x * 0 = y * b + d2 <-> E. y 0 = y * b + d) |
9 |
8 |
exeqd |
d2 = d -> (E. x E. y x * 0 = y * b + d2 <-> E. x E. y 0 = y * b + d) |
10 |
3, 9 |
aneqd |
d2 = d -> (0 < d2 /\ E. x E. y x * 0 = y * b + d2 <-> 0 < d /\ E. x E. y 0 = y * b + d) |
11 |
10 |
elabe |
d e. {d2 | 0 < d2 /\ E. x E. y x * 0 = y * b + d2} <-> 0 < d /\ E. x E. y 0 = y * b + d |
12 |
|
absurd |
~0 = y * b + d -> 0 = y * b + d -> F. |
13 |
|
ltne |
0 < y * b + d -> 0 != y * b + d |
14 |
13 |
conv ne |
0 < y * b + d -> ~0 = y * b + d |
15 |
|
leaddid2 |
d <= y * b + d |
16 |
|
ltletr |
0 < d -> d <= y * b + d -> 0 < y * b + d |
17 |
15, 16 |
mpi |
0 < d -> 0 < y * b + d |
18 |
14, 17 |
syl |
0 < d -> ~0 = y * b + d |
19 |
12, 18 |
syl |
0 < d -> 0 = y * b + d -> F. |
20 |
19 |
eexd |
0 < d -> E. y 0 = y * b + d -> F. |
21 |
20 |
eexd |
0 < d -> E. x E. y 0 = y * b + d -> F. |
22 |
21 |
imp |
0 < d /\ E. x E. y 0 = y * b + d -> F. |
23 |
11, 22 |
sylbi |
d e. {d2 | 0 < d2 /\ E. x E. y x * 0 = y * b + d2} -> F. |
24 |
|
notfal |
~F. |
25 |
23, 24 |
mt |
~d e. {d2 | 0 < d2 /\ E. x E. y x * 0 = y * b + d2} |
26 |
25 |
ngen |
~E. d d e. {d2 | 0 < d2 /\ E. x E. y x * 0 = y * b + d2} |
27 |
2, 26 |
ax_mp |
bgcd 0 b = 0 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
add0,
addS,
mul0)