Theorem least0 | index | src |

theorem least0 (A: set) {x: nat}: $ ~E. x x e. A -> least A = 0 $;
StepHypRefExpression
1 absurdr
E. x x e. A -> ~E. x x e. A -> y = 0
2 eleq1
x = y -> (x e. A <-> y e. A)
3 2 iexe
y e. A -> E. x x e. A
4 3 anwl
y e. A /\ A. z (z e. A -> y <= z) -> E. x x e. A
5 1, 4 syl
y e. A /\ A. z (z e. A -> y <= z) -> ~E. x x e. A -> y = 0
6 5 com12
~E. x x e. A -> y e. A /\ A. z (z e. A -> y <= z) -> y = 0
7 6 eqthe0abd
~E. x x e. A -> the {y | y e. A /\ A. z (z e. A -> y <= z)} = 0
8 7 conv least
~E. x x e. A -> least A = 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0)