Theorem leastle | index | src |

theorem leastle (A: set) (a: nat): $ a e. A -> least A <= a $;
StepHypRefExpression
1 leastlem
a e. A -> least A e. A /\ A. x (x e. A -> least A <= x)
2 eleq1
x = a -> (x e. A <-> a e. A)
3 leeq2
x = a -> (least A <= x <-> least A <= a)
4 2, 3 imeqd
x = a -> (x e. A -> least A <= x <-> a e. A -> least A <= a)
5 4 eale
A. x (x e. A -> least A <= x) -> a e. A -> least A <= a
6 5 anwr
least A e. A /\ A. x (x e. A -> least A <= x) -> a e. A -> least A <= a
7 6 com12
a e. A -> least A e. A /\ A. x (x e. A -> least A <= x) -> least A <= a
8 1, 7 mpd
a e. A -> least A <= a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid), axs_peano (peano1, peano2, peano5, addeq, add0, addS)