Theorem subsnfin | index | src |

theorem subsnfin (A: set): $ subsn A -> finite A $;
StepHypRefExpression
1 snfin
finite {a1 | a1 = least A}
2 finss
A C_ {a1 | a1 = least A} -> finite {a1 | a1 = least A} -> finite A
3 1, 2 mpi
A C_ {a1 | a1 = least A} -> finite A
4 ssab2
A. a1 (a1 e. A -> a1 = least A) <-> A C_ {a1 | a1 = least A}
5 anl
subsn A /\ a1 e. A -> subsn A
6 anr
subsn A /\ a1 e. A -> a1 e. A
7 leastel
a1 e. A -> least A e. A
8 7 anwr
subsn A /\ a1 e. A -> least A e. A
9 5, 6, 8 subsni
subsn A /\ a1 e. A -> a1 = least A
10 9 ialda
subsn A -> A. a1 (a1 e. A -> a1 = least A)
11 4, 10 sylib
subsn A -> A C_ {a1 | a1 = least A}
12 3, 11 syl
subsn A -> finite A

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid), axs_peano (peano1, peano2, peano5, addeq, add0, addS)