theorem subsnfin (A: set): $ subsn A -> finite A $;
Step | Hyp | Ref | Expression |
1 |
|
snfin |
finite {a1 | a1 = least A} |
2 |
|
finss |
A C_ {a1 | a1 = least A} -> finite {a1 | a1 = least A} -> finite A |
3 |
1, 2 |
mpi |
A C_ {a1 | a1 = least A} -> finite A |
4 |
|
ssab2 |
A. a1 (a1 e. A -> a1 = least A) <-> A C_ {a1 | a1 = least A} |
5 |
|
anl |
subsn A /\ a1 e. A -> subsn A |
6 |
|
anr |
subsn A /\ a1 e. A -> a1 e. A |
7 |
|
leastel |
a1 e. A -> least A e. A |
8 |
7 |
anwr |
subsn A /\ a1 e. A -> least A e. A |
9 |
5, 6, 8 |
subsni |
subsn A /\ a1 e. A -> a1 = least A |
10 |
9 |
ialda |
subsn A -> A. a1 (a1 e. A -> a1 = least A) |
11 |
4, 10 |
sylib |
subsn A -> A C_ {a1 | a1 = least A} |
12 |
3, 11 |
syl |
subsn A -> finite A |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid),
axs_peano
(peano1,
peano2,
peano5,
addeq,
add0,
addS)