Theorem sappeqd | index | src |

theorem sappeqd (_G: wff) (_F1 _F2: set) (_x1 _x2: nat):
  $ _G -> _F1 == _F2 $ >
  $ _G -> _x1 = _x2 $ >
  $ _G -> _F1 @@ _x1 == _F2 @@ _x2 $;
StepHypRefExpression
1 hyp _Fh
_G -> _F1 == _F2
2 hyp _xh
_G -> _x1 = _x2
3 eqidd
_G -> y = y
4 2, 3 preqd
_G -> _x1, y = _x2, y
5 1, 4 rappeqd
_G -> _F1 @' (_x1, y) == _F2 @' (_x2, y)
6 5 sabeqd
_G -> S\ y, _F1 @' (_x1, y) == S\ y, _F2 @' (_x2, y)
7 6 conv sapp
_G -> _F1 @@ _x1 == _F2 @@ _x2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)