Theorem sabssxped | index | src |

theorem sabssxped (A C: set) (G: wff) (a: nat) (p: wff) {x: nat} (B: set x):
  $ G /\ x = fst a -> snd a e. B -> p /\ x e. A /\ snd a e. C $ >
  $ G -> a e. S\ x, B -> p /\ a e. Xp A C $;
StepHypRefExpression
2
fst a, snd a e. S\ x, B <-> snd a e. S[fst a / x] B
5
fst a, snd a = a
6
fst a, snd a e. S\ x, B <-> a e. S\ x, B
7
2, 6
snd a e. S[fst a / x] B <-> a e. S\ x, B
8
a e. Xp A C <-> fst a e. A /\ snd a e. C
9
p /\ a e. Xp A C <-> p /\ (fst a e. A /\ snd a e. C)
10
E. x x = fst a
11
F/ x G
12
FS/ x S[fst a / x] B
13
F/ x snd a e. S[fst a / x] B
14
F/ x p /\ (fst a e. A /\ snd a e. C)
15
F/ x snd a e. S[fst a / x] B -> p /\ (fst a e. A /\ snd a e. C)
16
x = fst a -> B == S[fst a / x] B
17
x = fst a -> (snd a e. B <-> snd a e. S[fst a / x] B)
18
p /\ fst a e. A /\ snd a e. C <-> p /\ (fst a e. A /\ snd a e. C)
19
x = fst a -> (x e. A <-> fst a e. A)
20
x = fst a -> (p /\ x e. A <-> p /\ fst a e. A)
21
x = fst a -> (p /\ x e. A /\ snd a e. C <-> p /\ fst a e. A /\ snd a e. C)
22
x = fst a -> (p /\ x e. A /\ snd a e. C <-> p /\ (fst a e. A /\ snd a e. C))
23
x = fst a -> (snd a e. B -> p /\ x e. A /\ snd a e. C <-> snd a e. S[fst a / x] B -> p /\ (fst a e. A /\ snd a e. C))
24
G /\ x = fst a -> (snd a e. B -> p /\ x e. A /\ snd a e. C <-> snd a e. S[fst a / x] B -> p /\ (fst a e. A /\ snd a e. C))
25
hyp h
G /\ x = fst a -> snd a e. B -> p /\ x e. A /\ snd a e. C
26
G /\ x = fst a -> snd a e. S[fst a / x] B -> p /\ (fst a e. A /\ snd a e. C)
27
G -> x = fst a -> snd a e. S[fst a / x] B -> p /\ (fst a e. A /\ snd a e. C)
28
11, 15, 27
G -> E. x x = fst a -> snd a e. S[fst a / x] B -> p /\ (fst a e. A /\ snd a e. C)
29
G -> snd a e. S[fst a / x] B -> p /\ (fst a e. A /\ snd a e. C)
30
9, 29
G -> snd a e. S[fst a / x] B -> p /\ a e. Xp A C
31
7, 30
G -> a e. S\ x, B -> p /\ a e. Xp A C

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)