Theorem syl5bir | index | src |

theorem syl5bir (a b c d: wff): $ c <-> b $ > $ a -> c -> d $ > $ a -> b -> d $;
StepHypRefExpression
1 bicom
(c <-> b) -> (b <-> c)
2 hyp h1
c <-> b
3 1, 2 ax_mp
b <-> c
4 hyp h2
a -> c -> d
5 3, 4 syl5bi
a -> b -> d

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)