Theorem syl6ib | index | src |

theorem syl6ib (a b c d: wff): $ c <-> d $ > $ a -> b -> c $ > $ a -> b -> d $;
StepHypRefExpression
1 bi1
(c <-> d) -> c -> d
2 hyp h1
c <-> d
3 1, 2 ax_mp
c -> d
4 hyp h2
a -> b -> c
5 3, 4 syl6
a -> b -> d

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp)