theorem powerfin (A: set): $ finite A -> finite (Power A) $;
Step | Hyp | Ref | Expression |
1 |
|
dffin2 |
finite A <-> E. n A C_ upto n |
2 |
|
lteq2 |
x = suc (upto n) -> (a < x <-> a < suc (upto n)) |
3 |
2 |
imeq2d |
x = suc (upto n) -> (a e. Power A -> a < x <-> a e. Power A -> a < suc (upto n)) |
4 |
3 |
aleqd |
x = suc (upto n) -> (A. a (a e. Power A -> a < x) <-> A. a (a e. Power A -> a < suc (upto n))) |
5 |
4 |
iexe |
A. a (a e. Power A -> a < suc (upto n)) -> E. x A. a (a e. Power A -> a < x) |
6 |
5 |
conv finite |
A. a (a e. Power A -> a < suc (upto n)) -> finite (Power A) |
7 |
|
elPower |
a e. Power A <-> a C_ A |
8 |
|
leltsuc |
a <= upto n <-> a < suc (upto n) |
9 |
|
ssle |
a C_ upto n -> a <= upto n |
10 |
8, 9 |
sylib |
a C_ upto n -> a < suc (upto n) |
11 |
|
sstr |
a C_ A -> A C_ upto n -> a C_ upto n |
12 |
10, 11 |
syl6 |
a C_ A -> A C_ upto n -> a < suc (upto n) |
13 |
12 |
com12 |
A C_ upto n -> a C_ A -> a < suc (upto n) |
14 |
7, 13 |
syl5bi |
A C_ upto n -> a e. Power A -> a < suc (upto n) |
15 |
14 |
iald |
A C_ upto n -> A. a (a e. Power A -> a < suc (upto n)) |
16 |
6, 15 |
syl |
A C_ upto n -> finite (Power A) |
17 |
16 |
eex |
E. n A C_ upto n -> finite (Power A) |
18 |
1, 17 |
sylbi |
finite A -> finite (Power A) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)