Theorem dffin2 | index | src |

theorem dffin2 (A: set) {n: nat}: $ finite A <-> E. n A C_ upto n $;
StepHypRefExpression
1 bicom
(x e. upto n <-> x < n) -> (x < n <-> x e. upto n)
2 elupto
x e. upto n <-> x < n
3 1, 2 ax_mp
x < n <-> x e. upto n
4 3 imeq2i
x e. A -> x < n <-> x e. A -> x e. upto n
5 4 aleqi
A. x (x e. A -> x < n) <-> A. x (x e. A -> x e. upto n)
6 5 conv subset
A. x (x e. A -> x < n) <-> A C_ upto n
7 6 exeqi
E. n A. x (x e. A -> x < n) <-> E. n A C_ upto n
8 7 conv finite
finite A <-> E. n A C_ upto n

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)