theorem leupto (a b: nat): $ a <= b <-> upto a <= upto b $;
Step | Hyp | Ref | Expression |
1 |
|
bitr4 |
(a <= b <-> 2 ^ a <= 2 ^ b) -> (upto a <= upto b <-> 2 ^ a <= 2 ^ b) -> (a <= b <-> upto a <= upto b) |
2 |
|
lepow2 |
1 < 2 -> (a <= b <-> 2 ^ a <= 2 ^ b) |
3 |
|
d1lt2 |
1 < 2 |
4 |
2, 3 |
ax_mp |
a <= b <-> 2 ^ a <= 2 ^ b |
5 |
1, 4 |
ax_mp |
(upto a <= upto b <-> 2 ^ a <= 2 ^ b) -> (a <= b <-> upto a <= upto b) |
6 |
|
bitr |
(upto a <= upto b <-> upto a + 1 <= upto b + 1) -> (upto a + 1 <= upto b + 1 <-> 2 ^ a <= 2 ^ b) -> (upto a <= upto b <-> 2 ^ a <= 2 ^ b) |
7 |
|
leadd1 |
upto a <= upto b <-> upto a + 1 <= upto b + 1 |
8 |
6, 7 |
ax_mp |
(upto a + 1 <= upto b + 1 <-> 2 ^ a <= 2 ^ b) -> (upto a <= upto b <-> 2 ^ a <= 2 ^ b) |
9 |
|
leeq |
upto a + 1 = 2 ^ a -> upto b + 1 = 2 ^ b -> (upto a + 1 <= upto b + 1 <-> 2 ^ a <= 2 ^ b) |
10 |
|
uptoadd1 |
upto a + 1 = 2 ^ a |
11 |
9, 10 |
ax_mp |
upto b + 1 = 2 ^ b -> (upto a + 1 <= upto b + 1 <-> 2 ^ a <= 2 ^ b) |
12 |
|
uptoadd1 |
upto b + 1 = 2 ^ b |
13 |
11, 12 |
ax_mp |
upto a + 1 <= upto b + 1 <-> 2 ^ a <= 2 ^ b |
14 |
8, 13 |
ax_mp |
upto a <= upto b <-> 2 ^ a <= 2 ^ b |
15 |
5, 14 |
ax_mp |
a <= b <-> upto a <= upto b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)