Theorem upto1_sn | index | src |

theorem upto1_sn: $ upto 1 = sn 0 $;
StepHypRefExpression
1 eqtr
upto 1 = 0 ; upto 0 -> 0 ; upto 0 = sn 0 -> upto 1 = sn 0
2 uptoS_ins
upto (suc 0) = 0 ; upto 0
3 2 conv d1
upto 1 = 0 ; upto 0
4 1, 3 ax_mp
0 ; upto 0 = sn 0 -> upto 1 = sn 0
5 eqtr
0 ; upto 0 = 0 ; 0 -> 0 ; 0 = sn 0 -> 0 ; upto 0 = sn 0
6 inseq2
upto 0 = 0 -> 0 ; upto 0 = 0 ; 0
7 upto0
upto 0 = 0
8 6, 7 ax_mp
0 ; upto 0 = 0 ; 0
9 5, 8 ax_mp
0 ; 0 = sn 0 -> 0 ; upto 0 = sn 0
10 ins02
0 ; 0 = sn 0
11 9, 10 ax_mp
0 ; upto 0 = sn 0
12 4, 11 ax_mp
upto 1 = sn 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)