Theorem ins02 | index | src |

theorem ins02 (a: nat): $ a ; 0 = sn a $;
StepHypRefExpression
1 axext
a ; 0 == sn a -> a ; 0 = sn a
2 eqstr
a ; 0 == sn a u. 0 -> sn a u. 0 == sn a -> a ; 0 == sn a
3 insunsn
a ; 0 == sn a u. 0
4 2, 3 ax_mp
sn a u. 0 == sn a -> a ; 0 == sn a
5 un02
sn a u. 0 == sn a
6 4, 5 ax_mp
a ; 0 == sn a
7 1, 6 ax_mp
a ; 0 = sn a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)