theorem ins02 (a: nat): $ a ; 0 = sn a $;
Step | Hyp | Ref | Expression |
1 |
|
axext |
a ; 0 == sn a -> a ; 0 = sn a |
2 |
|
eqstr |
a ; 0 == sn a u. 0 -> sn a u. 0 == sn a -> a ; 0 == sn a |
3 |
|
insunsn |
a ; 0 == sn a u. 0 |
4 |
2, 3 |
ax_mp |
sn a u. 0 == sn a -> a ; 0 == sn a |
5 |
|
un02 |
sn a u. 0 == sn a |
6 |
4, 5 |
ax_mp |
a ; 0 == sn a |
7 |
1, 6 |
ax_mp |
a ; 0 = sn a |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)