Theorem un02 | index | src |

theorem un02 (A: set): $ A u. 0 == A $;
StepHypRefExpression
1 equn2
0 C_ A <-> A u. 0 == A
2 ss01
0 C_ A
3 1, 2 mpbi
A u. 0 == A

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)