theorem unidm (A: set): $ A u. A == A $;
Step | Hyp | Ref | Expression |
1 |
|
equn2 |
A C_ A <-> A u. A == A |
2 |
|
ssid |
A C_ A |
3 |
1, 2 |
mpbi |
A u. A == A |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8)