Theorem equn2 | index | src |

theorem equn2 (A B: set): $ A C_ B <-> B u. A == B $;
StepHypRefExpression
1 bitr
(A C_ B <-> A u. B == B) -> (A u. B == B <-> B u. A == B) -> (A C_ B <-> B u. A == B)
2 equn1
A C_ B <-> A u. B == B
3 1, 2 ax_mp
(A u. B == B <-> B u. A == B) -> (A C_ B <-> B u. A == B)
4 eqseq1
A u. B == B u. A -> (A u. B == B <-> B u. A == B)
5 uncom
A u. B == B u. A
6 4, 5 ax_mp
A u. B == B <-> B u. A == B
7 3, 6 ax_mp
A C_ B <-> B u. A == B

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)