Theorem equn1 | index | src |

theorem equn1 (A B: set): $ A C_ B <-> A u. B == B $;
StepHypRefExpression
1 unss
A u. B C_ B <-> A C_ B /\ B C_ B
2 id
A C_ B -> A C_ B
3 ssid
B C_ B
4 3 a1i
A C_ B -> B C_ B
5 2, 4 iand
A C_ B -> A C_ B /\ B C_ B
6 1, 5 sylibr
A C_ B -> A u. B C_ B
7 ssun2
B C_ A u. B
8 7 a1i
A C_ B -> B C_ A u. B
9 6, 8 ssasymd
A C_ B -> A u. B == B
10 ssun1
A C_ A u. B
11 sseq2
A u. B == B -> (A C_ A u. B <-> A C_ B)
12 10, 11 mpbii
A u. B == B -> A C_ B
13 9, 12 ibii
A C_ B <-> A u. B == B

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)