Theorem ssasymd | index | src |

theorem ssasymd (A B: set) (G: wff):
  $ G -> A C_ B $ >
  $ G -> B C_ A $ >
  $ G -> A == B $;
StepHypRefExpression
1 ssasym
A C_ B -> B C_ A -> A == B
2 hyp h1
G -> A C_ B
3 hyp h2
G -> B C_ A
4 1, 2, 3 sylc
G -> A == B

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4)