theorem ssasymd (A B: set) (G: wff): $ G -> A C_ B $ > $ G -> B C_ A $ > $ G -> A == B $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ssasym | A C_ B -> B C_ A -> A == B |
|
2 | hyp h1 | G -> A C_ B |
|
3 | hyp h2 | G -> B C_ A |
|
4 | 1, 2, 3 | sylc | G -> A == B |