Theorem sseq2 | index | src |

theorem sseq2 (A _B1 _B2: set): $ _B1 == _B2 -> (A C_ _B1 <-> A C_ _B2) $;
StepHypRefExpression
1 id
_B1 == _B2 -> _B1 == _B2
2 1 sseq2d
_B1 == _B2 -> (A C_ _B1 <-> A C_ _B2)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_12), axs_set (ax_8)