theorem ss01 (A: set): $ 0 C_ A $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | absurd | ~x e. 0 -> x e. 0 -> x e. A |
|
2 | el02 | ~x e. 0 |
|
3 | 1, 2 | ax_mp | x e. 0 -> x e. A |
4 | 3 | ax_gen | A. x (x e. 0 -> x e. A) |
5 | 4 | conv subset | 0 C_ A |