Theorem ss02 | index | src |

theorem ss02 (A: set): $ A C_ 0 <-> A == 0 $;
StepHypRefExpression
1 ss01
0 C_ A
2 ssasym
A C_ 0 -> 0 C_ A -> A == 0
3 1, 2 mpi
A C_ 0 -> A == 0
4 ss01
0 C_ 0
5 sseq1
A == 0 -> (A C_ 0 <-> 0 C_ 0)
6 4, 5 mpbiri
A == 0 -> A C_ 0
7 3, 6 ibii
A C_ 0 <-> A == 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)