Theorem insunsn | index | src |

theorem insunsn (a b: nat): $ a ; b == sn a u. b $;
StepHypRefExpression
1 elins
x e. a ; b <-> x = a \/ x e. b
2 elun
x e. sn a u. b <-> x e. sn a \/ x e. b
3 oreq1
(x = a <-> x e. sn a) -> (x = a \/ x e. b <-> x e. sn a \/ x e. b)
4 bicom
(x e. sn a <-> x = a) -> (x = a <-> x e. sn a)
5 elsn
x e. sn a <-> x = a
6 4, 5 ax_mp
x = a <-> x e. sn a
7 3, 6 ax_mp
x = a \/ x e. b <-> x e. sn a \/ x e. b
8 1, 2, 7 bitr4gi
x e. a ; b <-> x e. sn a u. b
9 8 eqri
a ; b == sn a u. b

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)