theorem insunsn (a b: nat): $ a ; b == sn a u. b $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | elins | x e. a ; b <-> x = a \/ x e. b | 
        
          | 2 |  | elun | x e. sn a u. b <-> x e. sn a \/ x e. b | 
        
          | 3 |  | oreq1 | (x = a <-> x e. sn a) -> (x = a \/ x e. b <-> x e. sn a \/ x e. b) | 
        
          | 4 |  | bicom | (x e. sn a <-> x = a) -> (x = a <-> x e. sn a) | 
        
          | 5 |  | elsn | x e. sn a <-> x = a | 
        
          | 6 | 4, 5 | ax_mp | x = a <-> x e. sn a | 
        
          | 7 | 3, 6 | ax_mp | x = a \/ x e. b <-> x e. sn a \/ x e. b | 
        
          | 8 | 1, 2, 7 | bitr4gi | x e. a ; b <-> x e. sn a u. b | 
        
          | 9 | 8 | eqri | a ; b == sn a u. b | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)