theorem insunsn (a b: nat): $ a ; b == sn a u. b $;
Step | Hyp | Ref | Expression |
1 |
|
elins |
x e. a ; b <-> x = a \/ x e. b |
2 |
|
elun |
x e. sn a u. b <-> x e. sn a \/ x e. b |
3 |
|
oreq1 |
(x = a <-> x e. sn a) -> (x = a \/ x e. b <-> x e. sn a \/ x e. b) |
4 |
|
bicom |
(x e. sn a <-> x = a) -> (x = a <-> x e. sn a) |
5 |
|
elsn |
x e. sn a <-> x = a |
6 |
4, 5 |
ax_mp |
x = a <-> x e. sn a |
7 |
3, 6 |
ax_mp |
x = a \/ x e. b <-> x e. sn a \/ x e. b |
8 |
1, 2, 7 |
bitr4gi |
x e. a ; b <-> x e. sn a u. b |
9 |
8 |
eqri |
a ; b == sn a u. b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)