theorem insss (A: set) (a b: nat): $ a ; b C_ A <-> a e. A /\ b C_ A $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | bitr | (a ; b C_ A <-> sn a u. b C_ A) -> (sn a u. b C_ A <-> a e. A /\ b C_ A) -> (a ; b C_ A <-> a e. A /\ b C_ A) | 
        
          | 2 |  | sseq1 | a ; b == sn a u. b -> (a ; b C_ A <-> sn a u. b C_ A) | 
        
          | 3 |  | insunsn | a ; b == sn a u. b | 
        
          | 4 | 2, 3 | ax_mp | a ; b C_ A <-> sn a u. b C_ A | 
        
          | 5 | 1, 4 | ax_mp | (sn a u. b C_ A <-> a e. A /\ b C_ A) -> (a ; b C_ A <-> a e. A /\ b C_ A) | 
        
          | 6 |  | bitr | (sn a u. b C_ A <-> sn a C_ A /\ b C_ A) -> (sn a C_ A /\ b C_ A <-> a e. A /\ b C_ A) -> (sn a u. b C_ A <-> a e. A /\ b C_ A) | 
        
          | 7 |  | unss | sn a u. b C_ A <-> sn a C_ A /\ b C_ A | 
        
          | 8 | 6, 7 | ax_mp | (sn a C_ A /\ b C_ A <-> a e. A /\ b C_ A) -> (sn a u. b C_ A <-> a e. A /\ b C_ A) | 
        
          | 9 |  | snss | sn a C_ A <-> a e. A | 
        
          | 10 | 9 | aneq1i | sn a C_ A /\ b C_ A <-> a e. A /\ b C_ A | 
        
          | 11 | 8, 10 | ax_mp | sn a u. b C_ A <-> a e. A /\ b C_ A | 
        
          | 12 | 5, 11 | ax_mp | a ; b C_ A <-> a e. A /\ b C_ A | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)