theorem ssins (A: set) (a b: nat): $ A C_ a ; b -> a e. A \/ A C_ b $;
Step | Hyp | Ref | Expression |
1 |
|
imeq2a |
(x e. A -> (x e. a ; b <-> x e. b)) -> (x e. A -> x e. a ; b <-> x e. A -> x e. b) |
2 |
|
elins |
x e. a ; b <-> x = a \/ x e. b |
3 |
|
bior1 |
~x = a -> (x = a \/ x e. b <-> x e. b) |
4 |
|
eleq1 |
x = a -> (x e. A <-> a e. A) |
5 |
4 |
bi1d |
x = a -> x e. A -> a e. A |
6 |
5 |
com12 |
x e. A -> x = a -> a e. A |
7 |
6 |
con3d |
x e. A -> ~a e. A -> ~x = a |
8 |
7 |
impcom |
~a e. A /\ x e. A -> ~x = a |
9 |
3, 8 |
syl |
~a e. A /\ x e. A -> (x = a \/ x e. b <-> x e. b) |
10 |
2, 9 |
syl5bb |
~a e. A /\ x e. A -> (x e. a ; b <-> x e. b) |
11 |
10 |
exp |
~a e. A -> x e. A -> (x e. a ; b <-> x e. b) |
12 |
1, 11 |
syl |
~a e. A -> (x e. A -> x e. a ; b <-> x e. A -> x e. b) |
13 |
12 |
aleqd |
~a e. A -> (A. x (x e. A -> x e. a ; b) <-> A. x (x e. A -> x e. b)) |
14 |
13 |
conv subset |
~a e. A -> (A C_ a ; b <-> A C_ b) |
15 |
14 |
bi1d |
~a e. A -> A C_ a ; b -> A C_ b |
16 |
15 |
com12 |
A C_ a ; b -> ~a e. A -> A C_ b |
17 |
16 |
conv or |
A C_ a ; b -> a e. A \/ A C_ b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)