Theorem uptoadd1 | index | src |

theorem uptoadd1 (n: nat): $ upto n + 1 = 2 ^ n $;
StepHypRefExpression
1 npcan
1 <= 2 ^ n -> 2 ^ n - 1 + 1 = 2 ^ n
2 1 conv upto
1 <= 2 ^ n -> upto n + 1 = 2 ^ n
3 powpos
0 < 2 -> 0 < 2 ^ n
4 3 conv d1, lt
0 < 2 -> 1 <= 2 ^ n
5 d0lt2
0 < 2
6 4, 5 ax_mp
1 <= 2 ^ n
7 2, 6 ax_mp
upto n + 1 = 2 ^ n

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)