theorem powpos (a b: nat): $ 0 < a -> 0 < a ^ b $;
Step | Hyp | Ref | Expression |
1 |
|
eqidd |
_1 = b -> 0 = 0 |
2 |
|
eqidd |
_1 = b -> a = a |
3 |
|
id |
_1 = b -> _1 = b |
4 |
2, 3 |
poweqd |
_1 = b -> a ^ _1 = a ^ b |
5 |
1, 4 |
lteqd |
_1 = b -> (0 < a ^ _1 <-> 0 < a ^ b) |
6 |
|
eqidd |
_1 = 0 -> 0 = 0 |
7 |
|
eqidd |
_1 = 0 -> a = a |
8 |
|
id |
_1 = 0 -> _1 = 0 |
9 |
7, 8 |
poweqd |
_1 = 0 -> a ^ _1 = a ^ 0 |
10 |
6, 9 |
lteqd |
_1 = 0 -> (0 < a ^ _1 <-> 0 < a ^ 0) |
11 |
|
eqidd |
_1 = a1 -> 0 = 0 |
12 |
|
eqidd |
_1 = a1 -> a = a |
13 |
|
id |
_1 = a1 -> _1 = a1 |
14 |
12, 13 |
poweqd |
_1 = a1 -> a ^ _1 = a ^ a1 |
15 |
11, 14 |
lteqd |
_1 = a1 -> (0 < a ^ _1 <-> 0 < a ^ a1) |
16 |
|
eqidd |
_1 = suc a1 -> 0 = 0 |
17 |
|
eqidd |
_1 = suc a1 -> a = a |
18 |
|
id |
_1 = suc a1 -> _1 = suc a1 |
19 |
17, 18 |
poweqd |
_1 = suc a1 -> a ^ _1 = a ^ suc a1 |
20 |
16, 19 |
lteqd |
_1 = suc a1 -> (0 < a ^ _1 <-> 0 < a ^ suc a1) |
21 |
|
lteq2 |
a ^ 0 = 1 -> (0 < a ^ 0 <-> 0 < 1) |
22 |
|
pow0 |
a ^ 0 = 1 |
23 |
21, 22 |
ax_mp |
0 < a ^ 0 <-> 0 < 1 |
24 |
|
d0lt1 |
0 < 1 |
25 |
23, 24 |
mpbir |
0 < a ^ 0 |
26 |
25 |
a1i |
0 < a -> 0 < a ^ 0 |
27 |
|
lteq2 |
a ^ suc a1 = a * a ^ a1 -> (0 < a ^ suc a1 <-> 0 < a * a ^ a1) |
28 |
|
powS |
a ^ suc a1 = a * a ^ a1 |
29 |
27, 28 |
ax_mp |
0 < a ^ suc a1 <-> 0 < a * a ^ a1 |
30 |
|
mulpos |
0 < a * a ^ a1 <-> 0 < a /\ 0 < a ^ a1 |
31 |
30 |
bi2i |
0 < a /\ 0 < a ^ a1 -> 0 < a * a ^ a1 |
32 |
29, 31 |
sylibr |
0 < a /\ 0 < a ^ a1 -> 0 < a ^ suc a1 |
33 |
5, 10, 15, 20, 26, 32 |
indd |
0 < a -> 0 < a ^ b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)