Theorem powne0 | index | src |

theorem powne0 (a b: nat): $ a != 0 -> a ^ b != 0 $;
StepHypRefExpression
1 lt01
0 < a <-> a != 0
2 lt01
0 < a ^ b <-> a ^ b != 0
3 powpos
0 < a -> 0 < a ^ b
4 2, 3 sylib
0 < a -> a ^ b != 0
5 1, 4 sylbir
a != 0 -> a ^ b != 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)