Theorem poweqd | index | src |

theorem poweqd (_G: wff) (_a1 _a2 _b1 _b2: nat):
  $ _G -> _a1 = _a2 $ >
  $ _G -> _b1 = _b2 $ >
  $ _G -> _a1 ^ _b1 = _a2 ^ _b2 $;
StepHypRefExpression
1 eqidd
_G -> 1 = 1
2 hyp _ah
_G -> _a1 = _a2
3 eqidd
_G -> n = n
4 2, 3 muleqd
_G -> _a1 * n = _a2 * n
5 4 lameqd
_G -> \ n, _a1 * n == \ n, _a2 * n
6 hyp _bh
_G -> _b1 = _b2
7 1, 5, 6 receqd
_G -> rec 1 (\ n, _a1 * n) _b1 = rec 1 (\ n, _a2 * n) _b2
8 7 conv pow
_G -> _a1 ^ _b1 = _a2 ^ _b2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)