Theorem pow11 | index | src |

theorem pow11 (b: nat): $ 1 ^ b = 1 $;
StepHypRefExpression
1 eqidd
_1 = b -> 1 = 1
2 id
_1 = b -> _1 = b
3 1, 2 poweqd
_1 = b -> 1 ^ _1 = 1 ^ b
4 3, 1 eqeqd
_1 = b -> (1 ^ _1 = 1 <-> 1 ^ b = 1)
5 eqidd
_1 = 0 -> 1 = 1
6 id
_1 = 0 -> _1 = 0
7 5, 6 poweqd
_1 = 0 -> 1 ^ _1 = 1 ^ 0
8 7, 5 eqeqd
_1 = 0 -> (1 ^ _1 = 1 <-> 1 ^ 0 = 1)
9 eqidd
_1 = a1 -> 1 = 1
10 id
_1 = a1 -> _1 = a1
11 9, 10 poweqd
_1 = a1 -> 1 ^ _1 = 1 ^ a1
12 11, 9 eqeqd
_1 = a1 -> (1 ^ _1 = 1 <-> 1 ^ a1 = 1)
13 eqidd
_1 = suc a1 -> 1 = 1
14 id
_1 = suc a1 -> _1 = suc a1
15 13, 14 poweqd
_1 = suc a1 -> 1 ^ _1 = 1 ^ suc a1
16 15, 13 eqeqd
_1 = suc a1 -> (1 ^ _1 = 1 <-> 1 ^ suc a1 = 1)
17 pow0
1 ^ 0 = 1
18 powS
1 ^ suc a1 = 1 * 1 ^ a1
19 mul11
1 * 1 ^ a1 = 1 ^ a1
20 id
1 ^ a1 = 1 -> 1 ^ a1 = 1
21 19, 20 syl5eq
1 ^ a1 = 1 -> 1 * 1 ^ a1 = 1
22 18, 21 syl5eq
1 ^ a1 = 1 -> 1 ^ suc a1 = 1
23 4, 8, 12, 16, 17, 22 ind
1 ^ b = 1

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)