Theorem pow22 | index | src |

theorem pow22 (a: nat): $ a ^ 2 = a * a $;
StepHypRefExpression
1 eqtr
a ^ 2 = a * a ^ 1 -> a * a ^ 1 = a * a -> a ^ 2 = a * a
2 powS
a ^ suc 1 = a * a ^ 1
3 2 conv d2
a ^ 2 = a * a ^ 1
4 1, 3 ax_mp
a * a ^ 1 = a * a -> a ^ 2 = a * a
5 muleq2
a ^ 1 = a -> a * a ^ 1 = a * a
6 pow12
a ^ 1 = a
7 5, 6 ax_mp
a * a ^ 1 = a * a
8 4, 7 ax_mp
a ^ 2 = a * a

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)