Theorem sizeeqd | index | src |

theorem sizeeqd (_G: wff) (_A1 _A2: set):
  $ _G -> _A1 == _A2 $ >
  $ _G -> size _A1 = size _A2 $;
StepHypRefExpression
1 hyp _Ah
_G -> _A1 == _A2
2 eqsidd
_G -> upto k == upto k
3 1, 2 sseqd
_G -> (_A1 C_ upto k <-> _A2 C_ upto k)
4 3 abeqd
_G -> {k | _A1 C_ upto k} == {k | _A2 C_ upto k}
5 4 leasteqd
_G -> least {k | _A1 C_ upto k} = least {k | _A2 C_ upto k}
6 5 conv size
_G -> size _A1 = size _A2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0)