theorem leasteqd (_G: wff) (_A1 _A2: set):
$ _G -> _A1 == _A2 $ >
$ _G -> least _A1 = least _A2 $;
Step | Hyp | Ref | Expression |
1 |
|
eqidd |
_G -> x = x |
2 |
|
hyp _Ah |
_G -> _A1 == _A2 |
3 |
1, 2 |
eleqd |
_G -> (x e. _A1 <-> x e. _A2) |
4 |
|
eqidd |
_G -> y = y |
5 |
4, 2 |
eleqd |
_G -> (y e. _A1 <-> y e. _A2) |
6 |
|
biidd |
_G -> (x <= y <-> x <= y) |
7 |
5, 6 |
imeqd |
_G -> (y e. _A1 -> x <= y <-> y e. _A2 -> x <= y) |
8 |
7 |
aleqd |
_G -> (A. y (y e. _A1 -> x <= y) <-> A. y (y e. _A2 -> x <= y)) |
9 |
3, 8 |
aneqd |
_G -> (x e. _A1 /\ A. y (y e. _A1 -> x <= y) <-> x e. _A2 /\ A. y (y e. _A2 -> x <= y)) |
10 |
9 |
abeqd |
_G -> {x | x e. _A1 /\ A. y (y e. _A1 -> x <= y)} == {x | x e. _A2 /\ A. y (y e. _A2 -> x <= y)} |
11 |
10 |
theeqd |
_G -> the {x | x e. _A1 /\ A. y (y e. _A1 -> x <= y)} = the {x | x e. _A2 /\ A. y (y e. _A2 -> x <= y)} |
12 |
11 |
conv least |
_G -> least _A1 = least _A2 |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0)