Theorem leasteqd | index | src |

theorem leasteqd (_G: wff) (_A1 _A2: set):
  $ _G -> _A1 == _A2 $ >
  $ _G -> least _A1 = least _A2 $;
StepHypRefExpression
1 eqidd
_G -> x = x
2 hyp _Ah
_G -> _A1 == _A2
3 1, 2 eleqd
_G -> (x e. _A1 <-> x e. _A2)
4 eqidd
_G -> y = y
5 4, 2 eleqd
_G -> (y e. _A1 <-> y e. _A2)
6 biidd
_G -> (x <= y <-> x <= y)
7 5, 6 imeqd
_G -> (y e. _A1 -> x <= y <-> y e. _A2 -> x <= y)
8 7 aleqd
_G -> (A. y (y e. _A1 -> x <= y) <-> A. y (y e. _A2 -> x <= y))
9 3, 8 aneqd
_G -> (x e. _A1 /\ A. y (y e. _A1 -> x <= y) <-> x e. _A2 /\ A. y (y e. _A2 -> x <= y))
10 9 abeqd
_G -> {x | x e. _A1 /\ A. y (y e. _A1 -> x <= y)} == {x | x e. _A2 /\ A. y (y e. _A2 -> x <= y)}
11 10 theeqd
_G -> the {x | x e. _A1 /\ A. y (y e. _A1 -> x <= y)} = the {x | x e. _A2 /\ A. y (y e. _A2 -> x <= y)}
12 11 conv least
_G -> least _A1 = least _A2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0)