theorem ssle (a b: nat): $ a C_ b -> a <= b $;
| Step | Hyp | Ref | Expression |
| 1 |
|
leeq |
a % 2 ^ max a b = a -> b % 2 ^ max a b = b -> (a % 2 ^ max a b <= b % 2 ^ max a b <-> a <= b) |
| 2 |
|
modlteq |
a < 2 ^ max a b -> a % 2 ^ max a b = a |
| 3 |
|
lelttr |
a <= max a b -> max a b < 2 ^ max a b -> a < 2 ^ max a b |
| 4 |
|
lemax1 |
a <= max a b |
| 5 |
3, 4 |
ax_mp |
max a b < 2 ^ max a b -> a < 2 ^ max a b |
| 6 |
|
powltid2 |
1 < 2 -> max a b < 2 ^ max a b |
| 7 |
|
d1lt2 |
1 < 2 |
| 8 |
6, 7 |
ax_mp |
max a b < 2 ^ max a b |
| 9 |
5, 8 |
ax_mp |
a < 2 ^ max a b |
| 10 |
2, 9 |
ax_mp |
a % 2 ^ max a b = a |
| 11 |
1, 10 |
ax_mp |
b % 2 ^ max a b = b -> (a % 2 ^ max a b <= b % 2 ^ max a b <-> a <= b) |
| 12 |
|
modlteq |
b < 2 ^ max a b -> b % 2 ^ max a b = b |
| 13 |
|
lelttr |
b <= max a b -> max a b < 2 ^ max a b -> b < 2 ^ max a b |
| 14 |
|
lemax2 |
b <= max a b |
| 15 |
13, 14 |
ax_mp |
max a b < 2 ^ max a b -> b < 2 ^ max a b |
| 16 |
15, 8 |
ax_mp |
b < 2 ^ max a b |
| 17 |
12, 16 |
ax_mp |
b % 2 ^ max a b = b |
| 18 |
11, 17 |
ax_mp |
a % 2 ^ max a b <= b % 2 ^ max a b <-> a <= b |
| 19 |
|
bndextle |
A. x (x < max a b -> x e. a -> x e. b) -> a % 2 ^ max a b <= b % 2 ^ max a b |
| 20 |
|
ax_1 |
(x e. a -> x e. b) -> x < max a b -> x e. a -> x e. b |
| 21 |
20 |
alimi |
A. x (x e. a -> x e. b) -> A. x (x < max a b -> x e. a -> x e. b) |
| 22 |
21 |
conv subset |
a C_ b -> A. x (x < max a b -> x e. a -> x e. b) |
| 23 |
19, 22 |
syl |
a C_ b -> a % 2 ^ max a b <= b % 2 ^ max a b |
| 24 |
18, 23 |
sylib |
a C_ b -> a <= b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)