theorem bndext (a b n: nat) {x: nat}:
  $ A. x (x < n -> (x e. a <-> x e. b)) -> mod(2 ^ n): a = b $;
    
      
        | Step | Hyp | Ref | Expression | 
        
          | 1 | 
           | 
          bndextle | 
          A. x (x < n -> x e. a -> x e. b) -> a % 2 ^ n <= b % 2 ^ n  | 
        
        
          | 2 | 
           | 
          bi1 | 
          (x e. a <-> x e. b) -> x e. a -> x e. b  | 
        
        
          | 3 | 
          2 | 
          imim2i | 
          (x < n -> (x e. a <-> x e. b)) -> x < n -> x e. a -> x e. b  | 
        
        
          | 4 | 
          3 | 
          alimi | 
          A. x (x < n -> (x e. a <-> x e. b)) -> A. x (x < n -> x e. a -> x e. b)  | 
        
        
          | 5 | 
          1, 4 | 
          syl | 
          A. x (x < n -> (x e. a <-> x e. b)) -> a % 2 ^ n <= b % 2 ^ n  | 
        
        
          | 6 | 
           | 
          bndextle | 
          A. x (x < n -> x e. b -> x e. a) -> b % 2 ^ n <= a % 2 ^ n  | 
        
        
          | 7 | 
           | 
          bi2 | 
          (x e. a <-> x e. b) -> x e. b -> x e. a  | 
        
        
          | 8 | 
          7 | 
          imim2i | 
          (x < n -> (x e. a <-> x e. b)) -> x < n -> x e. b -> x e. a  | 
        
        
          | 9 | 
          8 | 
          alimi | 
          A. x (x < n -> (x e. a <-> x e. b)) -> A. x (x < n -> x e. b -> x e. a)  | 
        
        
          | 10 | 
          6, 9 | 
          syl | 
          A. x (x < n -> (x e. a <-> x e. b)) -> b % 2 ^ n <= a % 2 ^ n  | 
        
        
          | 11 | 
          5, 10 | 
          leasymd | 
          A. x (x < n -> (x e. a <-> x e. b)) -> a % 2 ^ n = b % 2 ^ n  | 
        
        
          | 12 | 
          11 | 
          conv eqm | 
          A. x (x < n -> (x e. a <-> x e. b)) -> mod(2 ^ n): a = b  | 
        
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)