theorem bndext (a b n: nat) {x: nat}:
$ A. x (x < n -> (x e. a <-> x e. b)) -> mod(2 ^ n): a = b $;
Step | Hyp | Ref | Expression |
1 |
|
bndextle |
A. x (x < n -> x e. a -> x e. b) -> a % 2 ^ n <= b % 2 ^ n |
2 |
|
bi1 |
(x e. a <-> x e. b) -> x e. a -> x e. b |
3 |
2 |
imim2i |
(x < n -> (x e. a <-> x e. b)) -> x < n -> x e. a -> x e. b |
4 |
3 |
alimi |
A. x (x < n -> (x e. a <-> x e. b)) -> A. x (x < n -> x e. a -> x e. b) |
5 |
1, 4 |
syl |
A. x (x < n -> (x e. a <-> x e. b)) -> a % 2 ^ n <= b % 2 ^ n |
6 |
|
bndextle |
A. x (x < n -> x e. b -> x e. a) -> b % 2 ^ n <= a % 2 ^ n |
7 |
|
bi2 |
(x e. a <-> x e. b) -> x e. b -> x e. a |
8 |
7 |
imim2i |
(x < n -> (x e. a <-> x e. b)) -> x < n -> x e. b -> x e. a |
9 |
8 |
alimi |
A. x (x < n -> (x e. a <-> x e. b)) -> A. x (x < n -> x e. b -> x e. a) |
10 |
6, 9 |
syl |
A. x (x < n -> (x e. a <-> x e. b)) -> b % 2 ^ n <= a % 2 ^ n |
11 |
5, 10 |
leasymd |
A. x (x < n -> (x e. a <-> x e. b)) -> a % 2 ^ n = b % 2 ^ n |
12 |
11 |
conv eqm |
A. x (x < n -> (x e. a <-> x e. b)) -> mod(2 ^ n): a = b |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)