Theorem elPower | index | src |

theorem elPower (A: set) (a: nat): $ a e. Power A <-> a C_ A $;
StepHypRefExpression
1 nseq
x = a -> x == a
2 1 sseq1d
x = a -> (x C_ A <-> a C_ A)
3 2 elabe
a e. {x | x C_ A} <-> a C_ A
4 3 conv Power
a e. Power A <-> a C_ A

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano2, addeq, muleq)