Theorem sseq1d | index | src |

theorem sseq1d (_G: wff) (_A1 _A2 B: set):
  $ _G -> _A1 == _A2 $ >
  $ _G -> (_A1 C_ B <-> _A2 C_ B) $;
StepHypRefExpression
1 hyp _h
_G -> _A1 == _A2
2 eqsidd
_G -> B == B
3 1, 2 sseqd
_G -> (_A1 C_ B <-> _A2 C_ B)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_12), axs_set (ax_8)