theorem sseq (_A1 _A2 _B1 _B2: set): $ _A1 == _A2 -> _B1 == _B2 -> (_A1 C_ _B1 <-> _A2 C_ _B2) $;
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | anl | _A1 == _A2 /\ _B1 == _B2 -> _A1 == _A2 |
|
2 | anr | _A1 == _A2 /\ _B1 == _B2 -> _B1 == _B2 |
|
3 | 1, 2 | sseqd | _A1 == _A2 /\ _B1 == _B2 -> (_A1 C_ _B1 <-> _A2 C_ _B2) |
4 | 3 | exp | _A1 == _A2 -> _B1 == _B2 -> (_A1 C_ _B1 <-> _A2 C_ _B2) |