theorem sstr (A B C: set): $ A C_ B -> B C_ C -> A C_ C $;
| Step | Hyp | Ref | Expression |
| 1 |
|
ssel |
A C_ B -> x e. A -> x e. B |
| 2 |
1 |
anwl |
A C_ B /\ B C_ C -> x e. A -> x e. B |
| 3 |
|
ssel |
B C_ C -> x e. B -> x e. C |
| 4 |
3 |
anwr |
A C_ B /\ B C_ C -> x e. B -> x e. C |
| 5 |
2, 4 |
syld |
A C_ B /\ B C_ C -> x e. A -> x e. C |
| 6 |
5 |
iald |
A C_ B /\ B C_ C -> A. x (x e. A -> x e. C) |
| 7 |
6 |
conv subset |
A C_ B /\ B C_ C -> A C_ C |
| 8 |
7 |
exp |
A C_ B -> B C_ C -> A C_ C |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_12),
axs_set
(ax_8)