Theorem eqss | index | src |

theorem eqss (A B: set): $ A == B -> A C_ B $;
StepHypRefExpression
1 ssid
A C_ A
2 sseq2
A == B -> (A C_ A <-> A C_ B)
3 1, 2 mpbii
A == B -> A C_ B

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_12), axs_set (ax_8)