| Step | Hyp | Ref | Expression |
| 1 |
|
binth |
~x e. 0 -> ~E. y (0 = suc y /\ x e. F @ y) -> (x e. 0 <-> E. y (0 = suc y /\ x e. F @ y)) |
| 2 |
|
nel0 |
~x e. 0 |
| 3 |
1, 2 |
ax_mp |
~E. y (0 = suc y /\ x e. F @ y) -> (x e. 0 <-> E. y (0 = suc y /\ x e. F @ y)) |
| 4 |
|
eqcom |
0 = suc y -> suc y = 0 |
| 5 |
4 |
anwl |
0 = suc y /\ x e. F @ y -> suc y = 0 |
| 6 |
|
peano1 |
suc y != 0 |
| 7 |
6 |
conv ne |
~suc y = 0 |
| 8 |
5, 7 |
mt |
~(0 = suc y /\ x e. F @ y) |
| 9 |
8 |
nexi |
~E. y (0 = suc y /\ x e. F @ y) |
| 10 |
3, 9 |
ax_mp |
x e. 0 <-> E. y (0 = suc y /\ x e. F @ y) |
| 11 |
|
obind0 |
obind 0 F = 0 |
| 12 |
|
obindeq1 |
n = 0 -> obind n F = obind 0 F |
| 13 |
11, 12 |
syl6eq |
n = 0 -> obind n F = 0 |
| 14 |
13 |
elneq2d |
n = 0 -> (x e. obind n F <-> x e. 0) |
| 15 |
|
eqeq1 |
n = 0 -> (n = suc y <-> 0 = suc y) |
| 16 |
15 |
aneq1d |
n = 0 -> (n = suc y /\ x e. F @ y <-> 0 = suc y /\ x e. F @ y) |
| 17 |
16 |
exeqd |
n = 0 -> (E. y (n = suc y /\ x e. F @ y) <-> E. y (0 = suc y /\ x e. F @ y)) |
| 18 |
14, 17 |
bieqd |
n = 0 -> (x e. obind n F <-> E. y (n = suc y /\ x e. F @ y) <-> (x e. 0 <-> E. y (0 = suc y /\ x e. F @ y))) |
| 19 |
10, 18 |
mpbiri |
n = 0 -> (x e. obind n F <-> E. y (n = suc y /\ x e. F @ y)) |
| 20 |
|
exsuc |
n != 0 <-> E. a1 n = suc a1 |
| 21 |
20 |
conv ne |
~n = 0 <-> E. a1 n = suc a1 |
| 22 |
|
bicom |
(E. y (y = a1 /\ x e. F @ y) <-> x e. F @ a1) -> (x e. F @ a1 <-> E. y (y = a1 /\ x e. F @ y)) |
| 23 |
|
appeq2 |
y = a1 -> F @ y = F @ a1 |
| 24 |
23 |
elneq2d |
y = a1 -> (x e. F @ y <-> x e. F @ a1) |
| 25 |
24 |
exeqe |
E. y (y = a1 /\ x e. F @ y) <-> x e. F @ a1 |
| 26 |
22, 25 |
ax_mp |
x e. F @ a1 <-> E. y (y = a1 /\ x e. F @ y) |
| 27 |
|
obindS |
obind (suc a1) F = F @ a1 |
| 28 |
|
obindeq1 |
n = suc a1 -> obind n F = obind (suc a1) F |
| 29 |
27, 28 |
syl6eq |
n = suc a1 -> obind n F = F @ a1 |
| 30 |
29 |
elneq2d |
n = suc a1 -> (x e. obind n F <-> x e. F @ a1) |
| 31 |
|
eqcomb |
a1 = y <-> y = a1 |
| 32 |
|
peano2 |
suc a1 = suc y <-> a1 = y |
| 33 |
|
eqeq1 |
n = suc a1 -> (n = suc y <-> suc a1 = suc y) |
| 34 |
32, 33 |
syl6bb |
n = suc a1 -> (n = suc y <-> a1 = y) |
| 35 |
31, 34 |
syl6bb |
n = suc a1 -> (n = suc y <-> y = a1) |
| 36 |
35 |
aneq1d |
n = suc a1 -> (n = suc y /\ x e. F @ y <-> y = a1 /\ x e. F @ y) |
| 37 |
36 |
exeqd |
n = suc a1 -> (E. y (n = suc y /\ x e. F @ y) <-> E. y (y = a1 /\ x e. F @ y)) |
| 38 |
30, 37 |
bieqd |
n = suc a1 -> (x e. obind n F <-> E. y (n = suc y /\ x e. F @ y) <-> (x e. F @ a1 <-> E. y (y = a1 /\ x e. F @ y))) |
| 39 |
26, 38 |
mpbiri |
n = suc a1 -> (x e. obind n F <-> E. y (n = suc y /\ x e. F @ y)) |
| 40 |
39 |
eex |
E. a1 n = suc a1 -> (x e. obind n F <-> E. y (n = suc y /\ x e. F @ y)) |
| 41 |
21, 40 |
sylbi |
~n = 0 -> (x e. obind n F <-> E. y (n = suc y /\ x e. F @ y)) |
| 42 |
19, 41 |
cases |
x e. obind n F <-> E. y (n = suc y /\ x e. F @ y) |