| Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | binth | ~x e. 0 -> ~E. y (0 = suc y /\ x e. F @ y) -> (x e. 0 <-> E. y (0 = suc y /\ x e. F @ y)) | 
        
          | 2 |  | nel0 | ~x e. 0 | 
        
          | 3 | 1, 2 | ax_mp | ~E. y (0 = suc y /\ x e. F @ y) -> (x e. 0 <-> E. y (0 = suc y /\ x e. F @ y)) | 
        
          | 4 |  | eqcom | 0 = suc y -> suc y = 0 | 
        
          | 5 | 4 | anwl | 0 = suc y /\ x e. F @ y -> suc y = 0 | 
        
          | 6 |  | peano1 | suc y != 0 | 
        
          | 7 | 6 | conv ne | ~suc y = 0 | 
        
          | 8 | 5, 7 | mt | ~(0 = suc y /\ x e. F @ y) | 
        
          | 9 | 8 | nexi | ~E. y (0 = suc y /\ x e. F @ y) | 
        
          | 10 | 3, 9 | ax_mp | x e. 0 <-> E. y (0 = suc y /\ x e. F @ y) | 
        
          | 11 |  | obind0 | obind 0 F = 0 | 
        
          | 12 |  | obindeq1 | n = 0 -> obind n F = obind 0 F | 
        
          | 13 | 11, 12 | syl6eq | n = 0 -> obind n F = 0 | 
        
          | 14 | 13 | elneq2d | n = 0 -> (x e. obind n F <-> x e. 0) | 
        
          | 15 |  | eqeq1 | n = 0 -> (n = suc y <-> 0 = suc y) | 
        
          | 16 | 15 | aneq1d | n = 0 -> (n = suc y /\ x e. F @ y <-> 0 = suc y /\ x e. F @ y) | 
        
          | 17 | 16 | exeqd | n = 0 -> (E. y (n = suc y /\ x e. F @ y) <-> E. y (0 = suc y /\ x e. F @ y)) | 
        
          | 18 | 14, 17 | bieqd | n = 0 -> (x e. obind n F <-> E. y (n = suc y /\ x e. F @ y) <-> (x e. 0 <-> E. y (0 = suc y /\ x e. F @ y))) | 
        
          | 19 | 10, 18 | mpbiri | n = 0 -> (x e. obind n F <-> E. y (n = suc y /\ x e. F @ y)) | 
        
          | 20 |  | exsuc | n != 0 <-> E. a1 n = suc a1 | 
        
          | 21 | 20 | conv ne | ~n = 0 <-> E. a1 n = suc a1 | 
        
          | 22 |  | bicom | (E. y (y = a1 /\ x e. F @ y) <-> x e. F @ a1) -> (x e. F @ a1 <-> E. y (y = a1 /\ x e. F @ y)) | 
        
          | 23 |  | appeq2 | y = a1 -> F @ y = F @ a1 | 
        
          | 24 | 23 | elneq2d | y = a1 -> (x e. F @ y <-> x e. F @ a1) | 
        
          | 25 | 24 | exeqe | E. y (y = a1 /\ x e. F @ y) <-> x e. F @ a1 | 
        
          | 26 | 22, 25 | ax_mp | x e. F @ a1 <-> E. y (y = a1 /\ x e. F @ y) | 
        
          | 27 |  | obindS | obind (suc a1) F = F @ a1 | 
        
          | 28 |  | obindeq1 | n = suc a1 -> obind n F = obind (suc a1) F | 
        
          | 29 | 27, 28 | syl6eq | n = suc a1 -> obind n F = F @ a1 | 
        
          | 30 | 29 | elneq2d | n = suc a1 -> (x e. obind n F <-> x e. F @ a1) | 
        
          | 31 |  | eqcomb | a1 = y <-> y = a1 | 
        
          | 32 |  | peano2 | suc a1 = suc y <-> a1 = y | 
        
          | 33 |  | eqeq1 | n = suc a1 -> (n = suc y <-> suc a1 = suc y) | 
        
          | 34 | 32, 33 | syl6bb | n = suc a1 -> (n = suc y <-> a1 = y) | 
        
          | 35 | 31, 34 | syl6bb | n = suc a1 -> (n = suc y <-> y = a1) | 
        
          | 36 | 35 | aneq1d | n = suc a1 -> (n = suc y /\ x e. F @ y <-> y = a1 /\ x e. F @ y) | 
        
          | 37 | 36 | exeqd | n = suc a1 -> (E. y (n = suc y /\ x e. F @ y) <-> E. y (y = a1 /\ x e. F @ y)) | 
        
          | 38 | 30, 37 | bieqd | n = suc a1 -> (x e. obind n F <-> E. y (n = suc y /\ x e. F @ y) <-> (x e. F @ a1 <-> E. y (y = a1 /\ x e. F @ y))) | 
        
          | 39 | 26, 38 | mpbiri | n = suc a1 -> (x e. obind n F <-> E. y (n = suc y /\ x e. F @ y)) | 
        
          | 40 | 39 | eex | E. a1 n = suc a1 -> (x e. obind n F <-> E. y (n = suc y /\ x e. F @ y)) | 
        
          | 41 | 21, 40 | sylbi | ~n = 0 -> (x e. obind n F <-> E. y (n = suc y /\ x e. F @ y)) | 
        
          | 42 | 19, 41 | cases | x e. obind n F <-> E. y (n = suc y /\ x e. F @ y) |