Theorem obindS | index | src |

pub theorem obindS (n: nat) (F: set): $ obind (suc n) F = F @ n $;
StepHypRefExpression
1 ocaseS
ocase 0 F @ suc n = F @ n
2 1 conv obind
obind (suc n) F = F @ n

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)