theorem obindS2 (n: nat) {x: nat}: $ obind n (\ x, suc x) = n $;
| Step | Hyp | Ref | Expression |
| 1 |
|
obind0 |
obind 0 (\ x, suc x) = 0 |
| 2 |
|
obindeq1 |
n = 0 -> obind n (\ x, suc x) = obind 0 (\ x, suc x) |
| 3 |
|
id |
n = 0 -> n = 0 |
| 4 |
2, 3 |
eqeqd |
n = 0 -> (obind n (\ x, suc x) = n <-> obind 0 (\ x, suc x) = 0) |
| 5 |
1, 4 |
mpbiri |
n = 0 -> obind n (\ x, suc x) = n |
| 6 |
|
exsuc |
n != 0 <-> E. a1 n = suc a1 |
| 7 |
6 |
conv ne |
~n = 0 <-> E. a1 n = suc a1 |
| 8 |
|
eqtr |
obind (suc a1) (\ x, suc x) = (\ x, suc x) @ a1 -> (\ x, suc x) @ a1 = suc a1 -> obind (suc a1) (\ x, suc x) = suc a1 |
| 9 |
|
obindS |
obind (suc a1) (\ x, suc x) = (\ x, suc x) @ a1 |
| 10 |
8, 9 |
ax_mp |
(\ x, suc x) @ a1 = suc a1 -> obind (suc a1) (\ x, suc x) = suc a1 |
| 11 |
|
suceq |
x = a1 -> suc x = suc a1 |
| 12 |
11 |
applame |
(\ x, suc x) @ a1 = suc a1 |
| 13 |
10, 12 |
ax_mp |
obind (suc a1) (\ x, suc x) = suc a1 |
| 14 |
|
obindeq1 |
n = suc a1 -> obind n (\ x, suc x) = obind (suc a1) (\ x, suc x) |
| 15 |
|
id |
n = suc a1 -> n = suc a1 |
| 16 |
14, 15 |
eqeqd |
n = suc a1 -> (obind n (\ x, suc x) = n <-> obind (suc a1) (\ x, suc x) = suc a1) |
| 17 |
13, 16 |
mpbiri |
n = suc a1 -> obind n (\ x, suc x) = n |
| 18 |
17 |
eex |
E. a1 n = suc a1 -> obind n (\ x, suc x) = n |
| 19 |
7, 18 |
sylbi |
~n = 0 -> obind n (\ x, suc x) = n |
| 20 |
5, 19 |
cases |
obind n (\ x, suc x) = n |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)