theorem el12 (a: nat): $ a e. 1 <-> a = 0 $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | lt12 | a < 1 <-> a = 0 | 
        
          | 2 |  | ellt | a e. 1 -> a < 1 | 
        
          | 3 | 1, 2 | sylib | a e. 1 -> a = 0 | 
        
          | 4 |  | el01 | 0 e. 1 <-> odd 1 | 
        
          | 5 |  | odd1 | odd 1 | 
        
          | 6 | 4, 5 | mpbir | 0 e. 1 | 
        
          | 7 |  | eleq1 | a = 0 -> (a e. 1 <-> 0 e. 1) | 
        
          | 8 | 6, 7 | mpbiri | a = 0 -> a e. 1 | 
        
          | 9 | 3, 8 | ibii | a e. 1 <-> a = 0 | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano1,
      peano2,
      peano5,
      addeq,
      muleq,
      add0,
      addS,
      mul0,
      mulS)