Theorem el12 | index | src |

theorem el12 (a: nat): $ a e. 1 <-> a = 0 $;
StepHypRefExpression
1 lt12
a < 1 <-> a = 0
2 ellt
a e. 1 -> a < 1
3 1, 2 sylib
a e. 1 -> a = 0
4 el01
0 e. 1 <-> odd 1
5 odd1
odd 1
6 4, 5 mpbir
0 e. 1
7 eleq1
a = 0 -> (a e. 1 <-> 0 e. 1)
8 6, 7 mpbiri
a = 0 -> a e. 1
9 3, 8 ibii
a e. 1 <-> a = 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)