theorem srecauxisf (S: set) (n: nat): $ isfun (srecaux S n) $;
Step | Hyp | Ref | Expression |
1 |
|
eqsidd |
x = n -> S == S |
2 |
|
id |
x = n -> x = n |
3 |
1, 2 |
srecauxeqd |
x = n -> srecaux S x = srecaux S n |
4 |
3 |
nseqd |
x = n -> srecaux S x == srecaux S n |
5 |
4 |
isfeqd |
x = n -> (isfun (srecaux S x) <-> isfun (srecaux S n)) |
6 |
|
eqsidd |
x = 0 -> S == S |
7 |
|
id |
x = 0 -> x = 0 |
8 |
6, 7 |
srecauxeqd |
x = 0 -> srecaux S x = srecaux S 0 |
9 |
8 |
nseqd |
x = 0 -> srecaux S x == srecaux S 0 |
10 |
9 |
isfeqd |
x = 0 -> (isfun (srecaux S x) <-> isfun (srecaux S 0)) |
11 |
|
eqsidd |
x = y -> S == S |
12 |
|
id |
x = y -> x = y |
13 |
11, 12 |
srecauxeqd |
x = y -> srecaux S x = srecaux S y |
14 |
13 |
nseqd |
x = y -> srecaux S x == srecaux S y |
15 |
14 |
isfeqd |
x = y -> (isfun (srecaux S x) <-> isfun (srecaux S y)) |
16 |
|
eqsidd |
x = suc y -> S == S |
17 |
|
id |
x = suc y -> x = suc y |
18 |
16, 17 |
srecauxeqd |
x = suc y -> srecaux S x = srecaux S (suc y) |
19 |
18 |
nseqd |
x = suc y -> srecaux S x == srecaux S (suc y) |
20 |
19 |
isfeqd |
x = suc y -> (isfun (srecaux S x) <-> isfun (srecaux S (suc y))) |
21 |
|
isfeq |
srecaux S 0 == 0 -> (isfun (srecaux S 0) <-> isfun 0) |
22 |
|
nseq |
srecaux S 0 = 0 -> srecaux S 0 == 0 |
23 |
|
srecaux0 |
srecaux S 0 = 0 |
24 |
22, 23 |
ax_mp |
srecaux S 0 == 0 |
25 |
21, 24 |
ax_mp |
isfun (srecaux S 0) <-> isfun 0 |
26 |
|
isf0 |
isfun 0 |
27 |
25, 26 |
mpbir |
isfun (srecaux S 0) |
28 |
|
isfeq |
srecaux S (suc y) == write (srecaux S y) y (S @ srecaux S y) -> (isfun (srecaux S (suc y)) <-> isfun (write (srecaux S y) y (S @ srecaux S y))) |
29 |
|
srecauxS |
srecaux S (suc y) == write (srecaux S y) y (S @ srecaux S y) |
30 |
28, 29 |
ax_mp |
isfun (srecaux S (suc y)) <-> isfun (write (srecaux S y) y (S @ srecaux S y)) |
31 |
|
writeisf |
isfun (srecaux S y) -> isfun (write (srecaux S y) y (S @ srecaux S y)) |
32 |
30, 31 |
sylibr |
isfun (srecaux S y) -> isfun (srecaux S (suc y)) |
33 |
5, 10, 15, 20, 27, 32 |
ind |
isfun (srecaux S n) |
Axiom use
axs_prop_calc
(ax_1,
ax_2,
ax_3,
ax_mp,
itru),
axs_pred_calc
(ax_gen,
ax_4,
ax_5,
ax_6,
ax_7,
ax_10,
ax_11,
ax_12),
axs_set
(elab,
ax_8),
axs_the
(theid,
the0),
axs_peano
(peano1,
peano2,
peano5,
addeq,
muleq,
add0,
addS,
mul0,
mulS)