Theorem srecauxisf | index | src |

theorem srecauxisf (S: set) (n: nat): $ isfun (srecaux S n) $;
StepHypRefExpression
1 eqsidd
x = n -> S == S
2 id
x = n -> x = n
3 1, 2 srecauxeqd
x = n -> srecaux S x = srecaux S n
4 3 nseqd
x = n -> srecaux S x == srecaux S n
5 4 isfeqd
x = n -> (isfun (srecaux S x) <-> isfun (srecaux S n))
6 eqsidd
x = 0 -> S == S
7 id
x = 0 -> x = 0
8 6, 7 srecauxeqd
x = 0 -> srecaux S x = srecaux S 0
9 8 nseqd
x = 0 -> srecaux S x == srecaux S 0
10 9 isfeqd
x = 0 -> (isfun (srecaux S x) <-> isfun (srecaux S 0))
11 eqsidd
x = y -> S == S
12 id
x = y -> x = y
13 11, 12 srecauxeqd
x = y -> srecaux S x = srecaux S y
14 13 nseqd
x = y -> srecaux S x == srecaux S y
15 14 isfeqd
x = y -> (isfun (srecaux S x) <-> isfun (srecaux S y))
16 eqsidd
x = suc y -> S == S
17 id
x = suc y -> x = suc y
18 16, 17 srecauxeqd
x = suc y -> srecaux S x = srecaux S (suc y)
19 18 nseqd
x = suc y -> srecaux S x == srecaux S (suc y)
20 19 isfeqd
x = suc y -> (isfun (srecaux S x) <-> isfun (srecaux S (suc y)))
21 isfeq
srecaux S 0 == 0 -> (isfun (srecaux S 0) <-> isfun 0)
22 nseq
srecaux S 0 = 0 -> srecaux S 0 == 0
23 srecaux0
srecaux S 0 = 0
24 22, 23 ax_mp
srecaux S 0 == 0
25 21, 24 ax_mp
isfun (srecaux S 0) <-> isfun 0
26 isf0
isfun 0
27 25, 26 mpbir
isfun (srecaux S 0)
28 isfeq
srecaux S (suc y) == write (srecaux S y) y (S @ srecaux S y) -> (isfun (srecaux S (suc y)) <-> isfun (write (srecaux S y) y (S @ srecaux S y)))
29 srecauxS
srecaux S (suc y) == write (srecaux S y) y (S @ srecaux S y)
30 28, 29 ax_mp
isfun (srecaux S (suc y)) <-> isfun (write (srecaux S y) y (S @ srecaux S y))
31 writeisf
isfun (srecaux S y) -> isfun (write (srecaux S y) y (S @ srecaux S y))
32 30, 31 sylibr
isfun (srecaux S y) -> isfun (srecaux S (suc y))
33 5, 10, 15, 20, 27, 32 ind
isfun (srecaux S n)

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)