Theorem srecaux0 | index | src |

theorem srecaux0 (S: set): $ srecaux S 0 = 0 $;
StepHypRefExpression
1 recn0
recn 0 (\\ a1, \ a2, lower (write a2 a1 (S @ a2))) 0 = 0
2 1 conv srecaux
srecaux S 0 = 0

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8), axs_the (theid, the0), axs_peano (peano1, peano2, peano5, addeq, muleq, add0, addS, mul0, mulS)