theorem srecauxeqd (_G: wff) (_S1 _S2: set) (_n1 _n2: nat):
  $ _G -> _S1 == _S2 $ >
  $ _G -> _n1 = _n2 $ >
  $ _G -> srecaux _S1 _n1 = srecaux _S2 _n2 $;
    
      
        | Step | Hyp | Ref | Expression | 
|---|
        
          | 1 |  | eqidd | _G -> 0 = 0 | 
        
          | 2 |  | eqsidd | _G -> b == b | 
        
          | 3 |  | eqidd | _G -> a = a | 
        
          | 4 |  | hyp _Sh | _G -> _S1 == _S2 | 
        
          | 5 |  | eqidd | _G -> b = b | 
        
          | 6 | 4, 5 | appeqd | _G -> _S1 @ b = _S2 @ b | 
        
          | 7 | 2, 3, 6 | writeeqd | _G -> write b a (_S1 @ b) == write b a (_S2 @ b) | 
        
          | 8 | 7 | lowereqd | _G -> lower (write b a (_S1 @ b)) = lower (write b a (_S2 @ b)) | 
        
          | 9 | 8 | lameqd | _G -> \ b, lower (write b a (_S1 @ b)) == \ b, lower (write b a (_S2 @ b)) | 
        
          | 10 | 9 | slameqd | _G -> (\\ a, \ b, lower (write b a (_S1 @ b))) == (\\ a, \ b, lower (write b a (_S2 @ b))) | 
        
          | 11 |  | hyp _nh | _G -> _n1 = _n2 | 
        
          | 12 | 1, 10, 11 | recneqd | _G -> recn 0 (\\ a, \ b, lower (write b a (_S1 @ b))) _n1 = recn 0 (\\ a, \ b, lower (write b a (_S2 @ b))) _n2 | 
        
          | 13 | 12 | conv srecaux | _G -> srecaux _S1 _n1 = srecaux _S2 _n2 | 
      
    
    Axiom use
    axs_prop_calc
     (ax_1,
      ax_2,
      ax_3,
      ax_mp,
      itru),
    
axs_pred_calc
     (ax_gen,
      ax_4,
      ax_5,
      ax_6,
      ax_7,
      ax_10,
      ax_11,
      ax_12),
    
axs_set
     (elab,
      ax_8),
    
axs_the
     (theid,
      the0),
    
axs_peano
     (peano2,
      addeq,
      muleq)