Theorem writeeqd | index | src |

theorem writeeqd (_G: wff) (_F1 _F2: set) (_a1 _a2 _b1 _b2: nat):
  $ _G -> _F1 == _F2 $ >
  $ _G -> _a1 = _a2 $ >
  $ _G -> _b1 = _b2 $ >
  $ _G -> write _F1 _a1 _b1 == write _F2 _a2 _b2 $;
StepHypRefExpression
1
_G -> x = x
2
hyp _ah
_G -> _a1 = _a2
3
1, 2
_G -> (x = _a1 <-> x = _a2)
4
_G -> y = y
5
hyp _bh
_G -> _b1 = _b2
6
4, 5
_G -> (y = _b1 <-> y = _b2)
7
_G -> x, y = x, y
8
hyp _Fh
_G -> _F1 == _F2
9
7, 8
_G -> (x, y e. _F1 <-> x, y e. _F2)
10
3, 6, 9
_G -> (ifp (x = _a1) (y = _b1) (x, y e. _F1) <-> ifp (x = _a2) (y = _b2) (x, y e. _F2))
11
_G -> {y | ifp (x = _a1) (y = _b1) (x, y e. _F1)} == {y | ifp (x = _a2) (y = _b2) (x, y e. _F2)}
12
_G -> S\ x, {y | ifp (x = _a1) (y = _b1) (x, y e. _F1)} == S\ x, {y | ifp (x = _a2) (y = _b2) (x, y e. _F2)}
13
conv write
_G -> write _F1 _a1 _b1 == write _F2 _a2 _b2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)