Theorem writeeqd | index | src |

theorem writeeqd (_G: wff) (_F1 _F2: set) (_a1 _a2 _b1 _b2: nat):
  $ _G -> _F1 == _F2 $ >
  $ _G -> _a1 = _a2 $ >
  $ _G -> _b1 = _b2 $ >
  $ _G -> write _F1 _a1 _b1 == write _F2 _a2 _b2 $;
StepHypRefExpression
1 eqidd
_G -> x = x
2 hyp _ah
_G -> _a1 = _a2
3 1, 2 eqeqd
_G -> (x = _a1 <-> x = _a2)
4 eqidd
_G -> y = y
5 hyp _bh
_G -> _b1 = _b2
6 4, 5 eqeqd
_G -> (y = _b1 <-> y = _b2)
7 eqidd
_G -> x, y = x, y
8 hyp _Fh
_G -> _F1 == _F2
9 7, 8 eleqd
_G -> (x, y e. _F1 <-> x, y e. _F2)
10 3, 6, 9 ifpeqd
_G -> (ifp (x = _a1) (y = _b1) (x, y e. _F1) <-> ifp (x = _a2) (y = _b2) (x, y e. _F2))
11 10 abeqd
_G -> {y | ifp (x = _a1) (y = _b1) (x, y e. _F1)} == {y | ifp (x = _a2) (y = _b2) (x, y e. _F2)}
12 11 sabeqd
_G -> S\ x, {y | ifp (x = _a1) (y = _b1) (x, y e. _F1)} == S\ x, {y | ifp (x = _a2) (y = _b2) (x, y e. _F2)}
13 12 conv write
_G -> write _F1 _a1 _b1 == write _F2 _a2 _b2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)