Theorem writeeq | index | src |

theorem writeeq (_F1 _F2: set) (_a1 _a2 _b1 _b2: nat):
  $ _F1 == _F2 ->
    _a1 = _a2 ->
    _b1 = _b2 ->
    write _F1 _a1 _b1 == write _F2 _a2 _b2 $;
StepHypRefExpression
1 anl
_F1 == _F2 /\ _a1 = _a2 -> _F1 == _F2
2 1 anwl
_F1 == _F2 /\ _a1 = _a2 /\ _b1 = _b2 -> _F1 == _F2
3 anr
_F1 == _F2 /\ _a1 = _a2 -> _a1 = _a2
4 3 anwl
_F1 == _F2 /\ _a1 = _a2 /\ _b1 = _b2 -> _a1 = _a2
5 anr
_F1 == _F2 /\ _a1 = _a2 /\ _b1 = _b2 -> _b1 = _b2
6 2, 4, 5 writeeqd
_F1 == _F2 /\ _a1 = _a2 /\ _b1 = _b2 -> write _F1 _a1 _b1 == write _F2 _a2 _b2
7 6 exp
_F1 == _F2 /\ _a1 = _a2 -> _b1 = _b2 -> write _F1 _a1 _b1 == write _F2 _a2 _b2
8 7 exp
_F1 == _F2 -> _a1 = _a2 -> _b1 = _b2 -> write _F1 _a1 _b1 == write _F2 _a2 _b2

Axiom use

axs_prop_calc (ax_1, ax_2, ax_3, ax_mp, itru), axs_pred_calc (ax_gen, ax_4, ax_5, ax_6, ax_7, ax_10, ax_11, ax_12), axs_set (elab, ax_8)